Attachment D

Stormceptor Design Calculations

Water Quality Unit 1 - DMH 1B

MassDEP SWTU Sizing Method

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices

Step	Description	Input	Units
1	WQV (0.5 or 1-inch):	1	inch
2	CN:	98	-
3	T _c :	0.1	hr
4	la/P:	0.034	_
5	Q _u (see tables):		csm/in
5a*	A:	0.0011	mi ²
6	WQF (Q) =	0.834845	cfs

^{*} Total area contributing to this WQU is obtained from HydroCAD reporting.

Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type I Distribution

Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	89
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	79
0.416	528	4.6	134	9	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	71
1.3	309	5.7	114	The state of the s	
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		

6.1

6.2

1.8

255

108

	Project Information & Location				
Project Name	Village at Grafton Woods 1	Project Number 00120-013			
City	Grafton	State/ Province	Massachusetts		
Country	ry United States of America Date 2/24/2021		2/24/2021		
Designer Information		EOR Information (optional)			
Name	Ashleigh Gilchrist	Name			
Company	Tighe & Bond	Company			
Phone #	603-294-9643	Phone #			
Email	agilchrist@tighebond.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU 1
Target TSS Removal (%)	80
TSS Removal (%) Provided	81
Recommended Stormceptor Model	STC 450i

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	81		
STC 900	88		
STC 1200	88		
STC 1800	88		
STC 2400	91		
STC 3600	91		
STC 4800	93		
STC 6000	93		
STC 7200	95		
STC 11000	96		
STC 13000	96		
STC 16000	97		

	Sizing Details				
Drainage	Area	Water Qu	ality Objective)	
Total Area (acres)	0.69	TSS Removal (%) 80.0		80.0	
Imperviousness %	100.0	Runoff Volume Capture (%)			
Rainfa	Rainfall		ume (Gal)		
Station Name	WORCESTER WSO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.80	
Station ID #	9923	Up Stre	am Storage		
Years of Records	58	Storage (ac-ft)	Discharge (cfs)		
Latitude	42°16'2"N	0.000 0.000		000	
Longitude	71°52'34"W	Up Stream Flow Diversion		on	
		Max. Flow to Stormce	eptor (cfs)		

Particle Size Distribution (PSD) The selected PSD defines TSS removal Fine Distribution				
Particle Diameter Distribution Specific Gravity (microns) %				
20.0	20.0	1.30		
60.0	20.0	1.80		
150.0	20.0	2.20		
400.0	20.0	2.65		
2000.0	20.0	2.65		

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Water Quality Unit 2 - DMH 15

MassDEP SWTU Sizing Method

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices

Step	Description	Input	Units
1	WQV (0.5 or 1-inch):	1	inch
2	CN:	98	_
3	T _c :	0.1	hr
4	Ia/P:	0.034	_
5	Q _u (see tables):	774	csm/in
5a*	A:	0.0002	mi ²
6	WQF (Q) =	0.150228	cfs

* Total area contributing to this WQU is obtained from HydroCAD reporting.

Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Storm Distribution

Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	88
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	79
0.416	528	4.6	134	9	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	71
1.3	309	5.7	114		
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		
1.7	264	6.1	108		
1.8	255	6.2	106		

MassDEP Q Rate - Sept. 10, 2013 - Page 7

6.7

6.8

6.9

99

213

	Project Information & Location				
Project Name	Village at Grafton Woods 2	Project Number	O0120-013		
City	Grafton	State/ Province	Massachusetts		
Country	United States of America Date 2/24/2021		2/24/2021		
Designer Information	Designer Information		(optional)		
Name	Ashleigh Gilchrist	Name			
Company	Tighe & Bond	Company			
Phone #	603-294-9643	Phone #			
Email	agilchrist@tighebond.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU 2
Target TSS Removal (%)	80
TSS Removal (%) Provided	92
Recommended Stormceptor Model	STC 450i

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	92	
STC 900	96	
STC 1200	96	
STC 1800	96	
STC 2400	97	
STC 3600	97	
STC 4800	98	
STC 6000	98	
STC 7200	99	
STC 11000	99	
STC 13000	99	
STC 16000	99	

Sizing Details					
Drainage	Area	Water Quality Objective			
Total Area (acres)	0.36	TSS Removal (%)		80.0	
Imperviousness %	35.0	Runoff Volume Cap	ture (%)		
Rainfall		Oil Spill Capture Vol	ume (Gal)		
Station Name	WORCESTER WSO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.15	
Station ID #	9923	Up Stre	am Storage		
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)	
Latitude	42°16'2"N	0.000 0.000		000	
Longitude	71°52'34"W	Up Stream Flow Diversion			
	_	Max. Flow to Stormceptor (cfs)			

Particle Size Distribution (PSD) The selected PSD defines TSS removal Fine Distribution					
Particle Diameter Distribution Specific Gravity (microns)					
20.0	20.0	1.30			
60.0	20.0	1.80			
150.0	20.0	2.20			
400.0	20.0	2.65			
2000.0	20.0	2.65			

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Water Quality Unit 3 - DMH 16

MassDEP SWTU Sizing Method

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices

Step	Description	Input	Units
1	WQV (0.5 or 1-inch):	1	inch
2	CN:	98	_
3	T _c :	0.1	hr
4	la/P:	0.034	•
5	Q _u (see tables):	774	csm/in
5a*	A:	0.0006	mi ²
6	WQF (Q) =	0.466536	cfs

* Total area contributing to this WQU is obtained from HydroCAD reporting.

Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Storm Distribution

Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	86
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	78
0.416	528	4.6	134	9	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	71
1.3	309	5.7	114		
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		
1.7	264	6.1	108		
1.8	255	6.2	106		

MassDEP Q Rate - Sept. 10, 2013 - Page 7

6.6

6.8

6.9

99

98

213

Project Information & Location					
Project Name	Village at Grafton Woods 3	Project Number	O0120-013		
City	Grafton	State/ Province	Massachusetts		
Country	United States of America	Date 2/24/2021			
Designer Information	n	EOR Information (optional)			
Name	Ashleigh Gilchrist	Name			
Company	Tighe & Bond	Company			
Phone #	603-294-9643	Phone #			
Email	agilchrist@tighebond.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU 3	
Target TSS Removal (%)	80	
TSS Removal (%) Provided	99	
Recommended Stormceptor Model	STC 450i	

Stormceptor Sizing Summary				
Stormceptor Model	% TSS Removal Provided			
STC 450i	99			
STC 900	100			
STC 1200	100			
STC 1800	100			
STC 2400	100			
STC 3600	100			
STC 4800	100			
STC 6000	100			
STC 7200	100			
STC 11000	100			
STC 13000	100			
STC 16000	100			

Sizing Details					
Drainage	Area	Water Quality Objective			
Total Area (acres)	1.5	TSS Removal (%)		80.0	
Imperviousness %	0.2	Runoff Volume Capture (%)			
Rainfall		Oil Spill Capture Volu	ume (Gal)		
Station Name	WORCESTER WSO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.50	
Station ID #	9923	Up Stre	am Storage		
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)	
Latitude	42°16'2"N	0.000 0.000		000	
Longitude	71°52'34"W	Up Stream Flow Diversion			
		Max. Flow to Stormceptor (cfs)			

Particle Size Distribution (PSD) The selected PSD defines TSS removal Fine Distribution					
Particle Diameter (microns)	Distribution %	Specific Gravity			
20.0	20.0	1.30			
60.0	20.0	1.80			
150.0	20.0	2.20			
400.0	20.0	2.65			
2000.0	20.0	2.65			

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Water Quality Unit 4 - DMH 12

MassDEP SWTU Sizing Method

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary **Stormwater Treatment Practices**

Step	Description	Input	Units
1	WQV (0.5 or 1-inch):	1	inch
2	CN:	98	_
3	T _c :	0.1	hr
4	Ia/P:	0.034	
5	Q _u (see tables):	774	csm/in
5a*	A:	0.0006	mi ²
6	WQF (Q) =	0.500435	cfs

Total area contributing to this WQU is obtained from HydroCAD reporting.

Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	88
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	79
0.416	528	4.6	134	9	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	7
1.3	309	5.7	114		
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		
1.7	264	6.1	108		
1.8	255	6.2	106		

MassDEP Q Rate - Sept. 10, 2013 - Page 7

6.7

6.8

6.9

104 102 101

99

213

Project Information & Location					
Project Name	Village at Grafton Woods 4	Project Number	O0120-013		
City	Grafton	State/ Province	Massachusetts		
Country	United States of America Date 4/15/2		4/15/2021		
Designer Information	n	EOR Information (optional)			
Name	Ashleigh Gilchrist	Name			
Company Tighe & Bond		Company			
Phone # 603-294-9643		Phone #			
Email	agilchrist@tighebond.com	Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU 4
Target TSS Removal (%)	80
TSS Removal (%) Provided	85
Recommended Stormceptor Model	STC 450i

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	85	
STC 900	91	
STC 1200	91	
STC 1800	91	
STC 2400	93	
STC 3600	94	
STC 4800	95	
STC 6000	95	
STC 7200	96	
STC 11000	97	
STC 13000	98	
STC 16000	98	

	Sizing Details				
Drainage	Drainage Area		Water Quality Objective		
Total Area (acres)	0.54	TSS Removal ((%)	80.0	
Imperviousness %	77.0	Runoff Volume Cap	ture (%)		
Rainfa	all	Oil Spill Capture Volume (Gal)			
Station Name	WORCESTER WSO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.50	
Station ID #	9923	Up Stream Storage			
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)	
Latitude	42°16'2"N	0.000 0.000		000	
Longitude	71°52'34"W	Up Stream Flow Diversion		on	
	_	Max. Flow to Stormce	eptor (cfs)		

Particle Size Distribution (PSD) The selected PSD defines TSS removal Fine Distribution			
Particle Diameter Distribution Specific Gravity (microns) %			
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Water Quality Unit 5 - DMH 17

MassDEP SWTU Sizing Method

Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices

Step	Description	Input	Units
1	WQV (0.5 or 1-inch):	1	inch
2	CN:	98	_
3	T _c :	0.1	hr
4	la/P:	0.034	
5	Q _u (see tables):	774	csm/in
5a*	A:	0.0009	mi²
6	WQF (Q) =	0.708993	cfs

* Total area contributing to this WQU is obtained from HydroCAD reporting.

Figure 4: for First 1-inch Runoff, Table of qu values for Ia/P Curve = 0.034, listed by tc, for Type III Storm

Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)	Tc (Hours)	qu (csm/in)
0.01	835	2.7	197	7.1	95
0.03	835	2.8	192	7.2	94
0.05	831	2.9	187	7.3	93
0.067	814	3	183	7.4	92
0.083	795	3.1	179	7.5	91
0.1	774	3.2	175	7.6	90
0.116	755	3.3	171	7.7	89
0.133	736	3.4	168	7.8	88
0.15	717	3.5	164	7.9	87
0.167	700	3.6	161	8	86
0.183	685	3.7	158	8.1	85
0.2	669	3.8	155	8.2	84
0.217	654	3.9	152	8.3	84
0.233	641	4	149	8.4	83
0.25	628	4.1	146	8.5	82
0.3	593	4.2	144	8.6	81
0.333	572	4.3	141	8.7	80
0.35	563	4.4	139	8.8	79
0.4	536	4.5	137	8.9	79
0.416	528	4.6	134	8	78
0.5	491	4.7	132	9.1	77
0.583	460	4.8	130	9.2	76
0.6	454	4.9	128	9.3	76
0.667	433	5	126	9.4	75
0.7	424	5.1	124	9.5	74
0.8	398	5.2	122	9.6	74
0.9	376	5.3	120	9.7	73
1	356	5.4	119	9.8	72
1.1	339	5.5	117	9.9	72
1.2	323	5.6	115	10	71
1.3	309	5.7	114		
1.4	296	5.8	112		
1.5	285	5.9	111		
1.6	274	6	109		
1.7	264	6.1	108		

MassDEP Q Rate - Sept. 10, 2013 - Page 7

6.4

6.7

6.8

6.9

99

98

213

Project Information & Location			
Project Name	Village at Grafton Woods 5	Project Number	O0120-013
City	Grafton	State/ Province	Massachusetts
Country	United States of America	Date 4/15/2021	
Designer Information		EOR Information (optional)	
Name	Ashleigh Gilchrist	Name	
Company	Tighe & Bond	Company	
Phone #	603-294-9643	Phone #	
Email	agilchrist@tighebond.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQU 5
Target TSS Removal (%)	80
TSS Removal (%) Provided	99
Recommended Stormceptor Model	STC 450i

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	99	
STC 900	100	
STC 1200	100	
STC 1800	100	
STC 2400	100	
STC 3600	100	
STC 4800	100	
STC 6000	100	
STC 7200	100	
STC 11000	100	
STC 13000	100	
STC 16000	100	

	Sizing Details				
Drainage	Drainage Area		Water Quality Objective		
Total Area (acres)	0.60	TSS Removal ((%)	80.0	
Imperviousness %	0.9	Runoff Volume Cap	ture (%)		
Rainfa	all	Oil Spill Capture Volume (Gal)			
Station Name	WORCESTER WSO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		0.70	
Station ID #	9923	Up Stream Storage			
Years of Records	58	Storage (ac-ft) Discharge (cfs)		rge (cfs)	
Latitude	42°16'2"N	0.000 0.000		000	
Longitude	71°52'34"W	Up Stream Flow Diversion		on	
		Max. Flow to Stormce	eptor (cfs)		

Particle Size Distribution (PSD) The selected PSD defines TSS removal Fine Distribution			
Particle Diameter Distribution Specific Gravity (microns) %			
20.0	20.0	1.30	
60.0	20.0	1.80	
150.0	20.0	2.20	
400.0	20.0	2.65	
2000.0	20.0	2.65	

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.